\qquad

1. What is the ideal mechanical advantage of a $3.5-\mathrm{cm}$ screw of which the threads measure 9.5 cm in length?
2. Calculate the actual mechanical advantage of a pulley attached to a $435-\mathrm{N}$ load, but requiring only 75 N to operate.
3. What is the actual mechanical advantage of a lever created form a plank of wood and a paint can if a $1540-\mathrm{N}$ boulder is lifted with only 225 N of force?
4. Calculate the mechanical advantage of a ramp that is 4 m long and 1.5 m high.
5. A student uses a pencil as a lever to launch a piece of trash into the trashcan. If the student positions a marker as the fulcrum just 3 cm from where she applies effort, and 7 cm from the piece of trash, what is the mechanical advantage the lever gives?
6. A young man works at the local gym. To block the intense afternoon sun, he uses a pulley to lower a $490-\mathrm{N}$ screen over the windows. If he uses only 65 N of force to operate the pulley, what is the mechanical advantage of the pulley?

Mechanical Advantage Calculations

Name:

1. What is the ideal mechanical advantage of a $3.5-\mathrm{cm}$ screw of which the threads measure 9.5 cm in length?
2. Calculate the actual mechanical advantage of a pulley attached to a $435-\mathrm{N}$ load, but requiring only 75 N to operate.
3. What is the actual mechanical advantage of a lever created form a plank of wood and a paint can if a $1540-\mathrm{N}$ boulder is lifted with only 225 N of force?
4. Calculate the mechanical advantage of a ramp that is 4 m long and 1.5 m high.
5. A student uses a pencil as a lever to launch a piece of trash into the trashcan. If the student positions a marker as the fulcrum just 3 cm from where she applies effort, and 7 cm from the piece of trash, what is the mechanical advantage the lever gives?
6. A young man works at the local gym. To block the intense afternoon sun, he uses a pulley to lower a $490-\mathrm{N}$ screen over the windows. If he uses only 65 N of force to operate the pulley, what is the mechanical advantage of the pulley?
\qquad
\qquad
7. What is the ideal mechanical advantage of a $3.5-\mathrm{cm}$ screw of which the threads measure 9.5 cm in length?

$$
I M A=\frac{d_{E}}{d_{R}}=\frac{9.5 \mathrm{~cm}}{3.5 \mathrm{~cm}}=2.7
$$

2. Calculate the actual mechanical advantage of a pulley attached to a $435-\mathrm{N}$ load, but requiring only 75 N to operate.

$$
A M A=\frac{F_{R}}{F_{E}}=\frac{435 \mathrm{~N}}{75 \mathrm{~N}}=5.8
$$

3. What is the actual mechanical advantage of a lever created form a plank of wood and a paint can if a $1540-\mathrm{N}$ boulder is lifted with only 225 N of force?

$$
A M A=\frac{F_{R}}{F_{E}}=\frac{1540 N}{225 N}=6.84
$$

4. Calculate the mechanical advantage of a ramp that is 4.0 m long and 1.5 m high.

$$
I M A=\frac{d_{E}}{d_{R}}=\frac{4.0 \mathrm{~cm}}{1.5 \mathrm{~cm}}=2.7
$$

5. A student uses a pencil as a lever to launch a piece of trash into the trashcan. If the student positions a marker as the fulcrum just 3 cm from where she applies effort, and 7 cm from the piece of trash, what is the mechanical advantage the lever gives?

$$
I M A=\frac{d_{E}}{d_{R}}=\frac{3 \mathrm{~cm}}{7 \mathrm{~cm}}=0.4
$$

6. A young man works at the local gym. To block the intense afternoon sun, he uses a pulley to lower a $490-\mathrm{N}$ screen over the windows. If he uses only 65 N of force to operate the pulley, what is the mechanical advantage of the pulley?

$$
A M A=\frac{F_{R}}{F_{E}}=\frac{490 \mathrm{~N}}{65 \mathrm{~N}}=7.5
$$

